Coumarin Schiff base derivatives | DDDT
The authors are grateful for the support from the College of Pharmacy, University of Sulaimani, Sulaymaniyah, Iraq.
1. Hussein DM, Al juboory SB, Mahmood AA. Antibacterial evaluation with computational study of new Schiff bases derived from 7-hydroxy-4-methyl coumarin. Orient J Chem. 2017;33(2):768–782. doi:10.13005/ojc/330224
2. Kupeli Akkol E, Genc Y, Karpuz B, Sobarzo-Sanchez E, Capasso R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers. 2020;12(7):1959. doi:10.3390/cancers12071959
3. Aoife L. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr Pharm Des. 2004;10(30):3797–3811. doi:10.2174/1381612043382693
4. Zhu -J-J, Jiang J-G. Pharmacological and nutritional effects of natural coumarins and their structure–activity relationships. Mol Nutr Food Res. 2018;62(14):1701073. doi:10.1002/mnfr.201701073
5. Kirsch G, Abdelwahab AB, Chaimbault P. Natural and synthetic coumarins with effects on inflammation. Molecules. 2016;21(10):1322. doi:10.3390/molecules21101322
6. Hassan MZ, Osman H, Ali MA, Ahsan MJ. Therapeutic potential of coumarins as antiviral agents. Eur J Med Chem. 2016;123:236–255. doi:10.1016/j.ejmech.2016.07.056
7. Thakur A, Singla R, Jaitak V. Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies. Eur J Med Chem. 2015;101:476–495. doi:10.1016/j.ejmech.2015.07.010
8. Garro A, Pungitore C. Coumarins as potential inhibitors of DNA polymerases and reverse transcriptases. searching new antiretroviral and antitumoral drugs. Curr Drug Discov Technol. 2015;12(2):66–79. doi:10.2174/1570163812666150716111719
9. Zhang L, Xu Z. Coumarin-containing hybrids and their anticancer activities. Eur J Med Chem. 2019;181:111587. doi:10.1016/j.ejmech.2019.111587
10. Menezes JC, Diederich M. Translational role of natural coumarins and their derivatives as anticancer agents. Future Med Chem. 2019;11(9):1057–1082. doi:10.4155/fmc-2018-0375
11. Konstantina CF, Dimitra JH-L, Konstantinos EL, Demetrios NN. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr Pharma Des. 2004;10(30):3813–3833. doi:10.2174/1381612043382710
12. Bansal Y, Sethi P, Bansal G. Coumarin: a potential nucleus for anti-inflammatory molecules. Medl Chem Res. 2012;22(7):3049–3060. doi:10.1007/s00044-012-0321-6
13. Gao L, Wang F, Chen Y, Li F, Han B, Liu D. The antithrombotic activity of natural and synthetic coumarins. Fitoterapia. 2021;154:104947. doi:10.1016/j.fitote.2021.104947
14. Carneiro A, Matos MJ, Uriarte E, Santana L. Trending topics on coumarin and its derivatives in 2020. Molecules. 2021;26(2):501. doi:10.3390/molecules26020501
15. Mishra S, Pandey A, Coumarin MS. An emerging antiviral agent. Heliyon. 2020;6(1):e03217. doi:10.1016/j.heliyon.2020.e03217
16. Gouda MA, Hussein BH, El-Demerdash A, et al. A review: synthesis and medicinal importance of coumarins and their analogues (Part II). Curr Bioact Compd. 2020;16(7):993–1008. doi:10.2174/1573407215666191111120604
17. Makowska A, Wolff L, Saczewski F, Bednarski PJ, Kornicka A. Synthesis and cytotoxic evaluation of benzoxazole/benzothiazole-2-imino-coumarin hybrids and their coumarin analogues as potential anticancer agents. Pharmazie. 2019;74(11):648–657. doi:10.1691/ph.2019.9664
18. Utreja D, Jain N, Sharma S. Advances in synthesis and potentially bioactive of coumarin derivatives. Curr Org Chem. 2018;22(26):2509–2536.
19. Dziduch K, Kolodziej P, Paneth A, Bogucka-Kocka A, Wujec M. Synthesis and anthelmintic activity of new thiosemicarbazide derivatives-a preliminary study. Molecules. 2020;25(12):2770. doi:10.3390/molecules25122770
20. Soucy NV. Acetophenone. Wexler P, editor.
21. Shkair A MH, Shakya A K, Raghavendra N M, Naik R R. Molecular modeling, synthesis and pharmacological evaluation of 1, 3, 4-thiadiazoles as anti-inflammatory and analgesic agents. Med Chem. 2016;12(1):90–100. doi:10.2174/1573406411666150608102236
22. Altintop MD, Can OD, Demir Ozkay U, Kaplancikli ZA. Synthesis and evaluation of new 1,3,4-thiadiazole derivatives as antinociceptive agents. Molecules. 2016;21(8):1004.
23. Hu Y, Li C-Y, Wang X-M, Yang Y-H, Zhu H-L. 1,3,4-thiadiazole: synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chem Rev. 2014;114(10):5572–5610. doi:10.1021/cr400131u
24. Angelova VT, Vassilev NG, Nikolova-Mladenova B, et al. Antiproliferative and antioxidative effects of novel hydrazone derivatives bearing coumarin and chromene moiety. Med Chem Res. 2016;25(9):2082–2092. doi:10.1007/s00044-016-1661-4
25. Nisa ZU, Akhtar T. para-aminobenzoic acid-A substrate of immense significance. Mini Rev Org Chem. 2020;17(6):686–700. doi:10.2174/1570193X16666190828201234
26. Eswayah A, Khaliel S, Saad S, et al. Synthesis and analgesic activity evaluation of some new benzimidazole derivatives. AASCIT. 2017;4(5):30–35.
27. Antonijevic MR, Simijonovic DM, Avdovic EH, et al. Green one-pot synthesis of coumarin-hydroxybenzohydrazide hybrids and their antioxidant potency. Antioxidants. 2021;10(7). doi:10.3390/antiox10071106
28. Kotali A, Nasiopoulou DA, Tsoleridis CA, Harris PA, Kontogiorgis CA, Hadjipavlou-Litina DJ. Antioxidant Activity of 3-[N-(Acylhydrazono)ethyl]-4-hydroxy-coumarins. Molecules. 2016;21(2):138. doi:10.3390/molecules21020138
29. Guo H, Callaway JB, Ting JP-Y. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677–687. doi:10.1038/nm.3893
30. Michels da Silva D, Langer H, Graf T. Inflammatory and molecular pathways in heart failure-ischemia, HFpEF and transthyretin cardiac amyloidosis. Int J Mol Sci. 2019;20(9):2322. doi:10.3390/ijms20092322
31. Zhang X, Wu X, Hu Q, et al. Mitochondrial DNA in liver inflammation and oxidative stress. Life Sci. 2019;236:116464. doi:10.1016/j.lfs.2019.05.020
32. Fritsch J, Abreu MT. The microbiota and the immune response: what is the chicken and what is the egg? Gastrointestinal Endosc Clin N Am. 2019;29(3):381–393. doi:10.1016/j.giec.2019.02.005
33. Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochem Pharmacol. 2020;180:114147. doi:10.1016/j.bcp.2020.114147
34. Gupta AK, Pandey J, Synthesis AA. Evaluation of some new 2-(5-(4-Benzamidobenzylidene)-2,4dioxothiazolidin-3-Yl) acetic acid analogs as aldose reductase inhibitors. Asian J Pharm Clin Res. 2016;10(1):62. doi:10.22159/ajpcr.2017.v10i1.12073
35. Budoff PW. Use of mefenamic acid in the treatment of primary dysmenorrhea. JAMA. 1979;241(25):2713–2716. doi:10.1001/jama.1979.03290510021018
36. Kowalski ML, Makowska JS. Seven steps to the diagnosis of NSAIDs hypersensitivity: how to apply a new classification in real practice? Allergy Asthma Immunol Res. 2015;7(4):312–320. doi:10.4168/aair.2015.7.4.312
37. Tacconelli S, Bruno A, Grande R, Ballerini P, Patrignani P. Nonsteroidal anti-inflammatory drugs and cardiovascular safety – translating pharmacological data into clinical readouts. Expert Opin Drug Saf. 2017;16(7):791–807. doi:10.1080/14740338.2017.1338272
38. Li J, Yin Y, Wang L, et al. Synthesis, characterization, and anti-inflammatory activities of methyl salicylate derivatives bearing piperazine moiety. Molecules. 2016;21(11):1544. doi:10.3390/molecules21111544
39. Dreischulte T, Morales DR, Bell S, Guthrie B. Combined use of nonsteroidal anti-inflammatory drugs with diuretics and/or renin–angiotensin system inhibitors in the community increases the risk of acute kidney injury. Kidney Int. 2015;88(2):396–403. doi:10.1038/ki.2015.101
40. Arfè A, Scotti L, Varas-Lorenzo C, et al. Non-steroidal anti-inflammatory drugs and risk of heart failure in four European countries: nested case-control study. BMJ. 2016;354:i4857. doi:10.1136/bmj.i4857
41. James DS. The multisystem adverse effects of NSAID therapy. J Osteopath Med. 1999;99(11):1–7.
42. García-Rayado G, Navarro M, Lanas A. NSAID induced gastrointestinal damage and designing GI-sparing NSAIDs. Expert Rev Clin Pharmacol. 2018;11(10):1031–1043. doi:10.1080/17512433.2018.1516143
43. Ilango K, Valentina P, Kumar G, Dixit D, Nilewar S, Kathiravan M. Design, synthesis and QSAR studies on a series of 2, 5-Disubstituted- 1,3,4-oxadiazole derivatives of diclofenac and naproxen for analgesic and anti-inflammatory activity. Med Chem. 2015;11(8):753–763. doi:10.2174/1573406411666150519112037
44. Arora M, Choudhary S, Singh PK, Sapra B, Silakari O. Structural investigation on the selective COX-2 inhibitors mediated cardiotoxicity: a review. Life Sci. 2020;251:117631. doi:10.1016/j.lfs.2020.117631
45. Schjerning A-M, McGettigan P, Gislason G. Cardiovascular effects and safety of (non-aspirin) NSAIDs. Nat Rev Cardiol. 2020;17(9):574–584. doi:10.1038/s41569-020-0366-z
46. Lichtenstein DR, Wolfe MM. COX-2–selective NSAIDs: new and improved? JAMA. 2000;284(10):1297–1299. doi:10.1001/jama.284.10.1297
47. Sharma V, Bhatia P, Alam O, et al. Recent advancement in the discovery and development of COX-2 inhibitors: insight into biological activities and SAR studies (2008–2019). Bioorg Chem. 2019;89:103007. doi:10.1016/j.bioorg.2019.103007
48. Wallace JL. NSAID gastropathy and enteropathy: distinct pathogenesis likely necessitates distinct prevention strategies. Br J Pharmacol. 2012;165(1):67–74. doi:10.1111/j.1476-5381.2011.01509.x
49. Bakhriansyah M, Souverein PC, de Boer A, Klungel OH. Gastrointestinal toxicity among patients taking selective COX‐2 inhibitors or conventional NSAIDs, alone or combined with proton pump inhibitors: a case–control study. Pharmacoepidemiol Drug Saf. 2017;26(10):1141–1148. doi:10.1002/pds.4183
50. Suthar SK, Sharma M. Recent developments in chimeric NSAIDs as safer anti‐inflammatory agents. Med Res Rev. 2015;35(2):341–407. doi:10.1002/med.21331
51. Lin X-H, Young S-H, Luo J-C, et al. Risk factors for upper gastrointestinal bleeding in patients taking selective COX-2 inhibitors: a Nationwide population-based cohort study. Pain Med. 2018;19(2):225–231. doi:10.1093/pm/pnx097
52. Baothman BK, Smith J, Kay LJ, Suvarna SK, Peachell PT. Prostaglandin D2 generation from human lung mast cells is catalysed exclusively by cyclooxygenase-1. Eur J Pharmacol. 2018;819:225–232. doi:10.1016/j.ejphar.2017.12.005
53. Daham K, Song WL, Lawson J, et al. Effects of celecoxib on major prostaglandins in asthma. Clin Exp Allergy. 2011;41(1):36–45. doi:10.1111/j.1365-2222.2010.03617.x
54. Wallace JL, Bak A, McKnight W, Asfaha S, Sharkey KA, MacNaughton WK. Cyclooxygenase 1 contributes to inflammatory responses in rats and mice: implications for gastrointestinal toxicity. Gastroenterology. 1998;115(1):101–109. doi:10.1016/S0016-5085(98)70370-1
55. Chen M, Boilard E, Nigrovic PA, et al. Predominance of cyclooxygenase 1 over cyclooxygenase 2 in the generation of proinflammatory prostaglandins in autoantibody‐driven K/BxN serum–transfer arthritis. Arthritis Rheumatol. 2008;58(5):1354–1365. doi:10.1002/art.23453
56. Peesa JP, Yalavarthi PR, Rasheed A, Mandava VBR. A perspective review on role of novel NSAID prodrugs in the management of acute inflammation. J Acute Dis. 2016;5(5):364–381. doi:10.1016/j.joad.2016.08.002
57. Benbow T, Campbell J. Microemulsions as transdermal drug delivery systems for nonsteroidal anti-inflammatory drugs (NSAIDs): a literature review. Drug Dev Ind Pharm. 2019;45(12):1849–1855. doi:10.1080/03639045.2019.1680996
58. Domper Arnal M-J, Hijos-Mallada G, Lanas A. Gastrointestinal and cardiovascular adverse events associated with NSAIDs. Expert Opin Drug Saf. 2022;21(3):373–384. doi:10.1080/14740338.2021.1965988
59. Husain A, Khan M, Hasan S, Alam M. 2-Arylidene-4-(4-phenoxy-phenyl) but-3-en-4-olides: synthesis, reactions and biological activity. Eur J Med Chem. 2005;40(12):1394–1404. doi:10.1016/j.ejmech.2005.03.012
60. Adams S. An interview with Stewart Adams. Trends Pharmacol Sci. 2012;33(1):1–2.
61. BBC N. Ibuprofen: dr Stewart Adams who helped discover drug dies at 95. BBC; 2019. Available from: https://www.bbc.com/news/uk-england-nottinghamshire-47073913.
62. Varrassi G, Pergolizzi JV, Dowling P, Paladini A. Ibuprofen safety at the golden anniversary: are all NSAIDs the same? A narrative review. Adv Ther. 2020;37(1):61–82. doi:10.1007/s12325-019-01144-9
63. Salih T, Salih HA. In silico design and molecular docking studies of carbapenem analogues targeting acinetobacter baumannii PBP1A receptor. AJPS. 2020;20(3):35–50. doi:10.32947/ajps.v20i3.759
64. Swain M. chemicalize.org. J Chem Inf Model. 2012;52(2):613–615. doi:10.1021/ci300046g
65. Berman H, Henrick K, Nakamura H. Announcing the worldwide Protein Data Bank. Nat Struct Mol Biol. 2003;10(12):980. doi:10.1038/nsb1203-980
66. Orlando BJ, Lucido MJ, Malkowski MG. The structure of ibuprofen bound to cyclooxygenase-2. J Struct Biol. 2015;189(1):62–66. doi:10.1016/j.jsb.2014.11.005
67. Pacheco AB, Hpc L. Introduction to AutoDock and AutoDock Tools. Baton Rouge: Louisiana State University; 2012.
68. ChemAxon. Marvinsketch, Version 20.16. ChemAxon Ltd. Budapest, Hungary; 2020.
69. Gouthami K, Veeraraghavan V, Nagaraja P. In-silico characterization of phytochemicals identified from Vitex negundo (L) extract as potential therapy for Wnt-signaling proteins. Egypt J Med Hum Genet. 2022;23(1). doi:10.1186/s43042-022-00219-7
70. Hobani Y, Jerah A, Bidwai A. A comparative molecular docking study of curcumin and methotrexate to dihydrofolate reductase. Bioinformation. 2017;13(3):63. doi:10.6026/97320630013063
71. Morris GM, Huey R, Olson AJ. Using AUTODOCK for ligand-receptor docking. Curr Protoc Bioinform. 2008;24(1):8–14. doi:10.1002/0471250953.bi0814s24
72. Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–2791. doi:10.1002/jcc.21256
73. Huey R, Morris GM, Forli S. Using AutoDock 4 and AutoDock vina with AutoDockTools: a tutorial. Scripps Res Inst Mol Graph Lab. 2012;10550:92037.
74. Sobell MG. A Practical Guide to Ubuntu Linux. Pearson Education; 2015.
75. Pettersen EF, Goddard TD, Huang CC, et al. UCSF chimera – A visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–1612. doi:10.1002/jcc.20084
76. Laskowski RA, Swindells MB LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. ACS Publications; 2011.
77. Sinha D, Tiwari AK, Singh S, et al. Synthesis, characterization and biological activity of Schiff base analogues of indole-3-carboxaldehyde. Eur J Med Chem. 2008;43(1):160–165. doi:10.1016/j.ejmech.2007.03.022
78. Gunathilake K, Ranaweera K, Rupasinghe HPV. In vitro anti-inflammatory properties of selected green leafy vegetables. Biomedicines. 2018;6(4):107. doi:10.3390/biomedicines6040107
79. Sakat S, Juvekar AR, Gambhire MN. In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. Int J Pharm Pharm Sci. 2010;2(1):146–155.
80. Mizushima Y, Kobayashi M. Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. J Pharm Pharmacol. 2011;20(3):169–173. doi:10.1111/j.2042-7158.1968.tb09718.x
81. Sehajpal S, Prasad DN, Singh RK. Prodrugs of non-steroidal anti-inflammatory drugs (NSAIDs): a long march towards synthesis of safer NSAIDs. Mini Rev Med Chem. 2018;18(14):1199–1219. doi:10.2174/1389557518666180330112416
82. Chmiel T, Mieszkowska A, Kempińska-Kupczyk D, Kot-Wasik A, Namieśnik J, Mazerska Z. The impact of lipophilicity on environmental processes, drug delivery and bioavailability of food components. Microchemical J. 2019;146:393–406. doi:10.1016/j.microc.2019.01.030
83. Osman NI, Sidik NJ, Awal A, Adam NA, Rezali NI. In vitro xanthine oxidase and albumin denaturation inhibition assay of Barringtonia racemosa L. and total phenolic content analysis for potential anti-inflammatory use in gouty arthritis. J Intercult Ethnopharmacol. 2016;5(4):343–349. doi:10.5455/jice.20160731025522
84. Moore DS, Notz W, Fligner MA The basic practice of statistics. W.H. Freeman and Company; 2013. Available from: https://books.google.iq/books?id=aw61ygAACAAJ.