Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp,
A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems, [code],
https://www.tensorflow.org/ (last access: 11 April 2023), 2015. a
Allotey, J., Butler, K. T., and Thiyagalingam, J.: Entropy-based active
learning of graph neural network surrogate models for materials properties,
J. Chem. Phys., 155, 174116, https://doi.org/10.1063/5.0065694, 2021. a
Almeida, L. B.: Multilayer Perceptrons, in: The Algebraic Mind: Integrating
Connectionism and Cognitive Science, The MIT Press,
https://doi.org/10.7551/mitpress/1187.003.0004, 2001. a, b
Berkemeier, T., Huisman, A. J., Ammann, M., Shiraiwa, M., Koop, T., and Pöschl, U.: Kinetic regimes and limiting cases of gas uptake and heterogeneous reactions in atmospheric aerosols and clouds: a general classification scheme, Atmos. Chem. Phys., 13, 6663–6686, https://doi.org/10.5194/acp-13-6663-2013, 2013. a
Berkemeier, T., Steimer, S. S., Krieger, U. K., Peter, T., Pöschl, U., Ammann,
M., and Shiraiwa, M.: Ozone uptake on glassy, semi-solid and liquid organic
matter and the role of reactive oxygen intermediates in atmospheric aerosol
chemistry, Phys. Chem. Chem. Phys., 18, 12662–12674,
https://doi.org/10.1039/C6CP00634E, 2016. a
Berkemeier, T., Ammann, M., Krieger, U. K., Peter, T., Spichtinger, P., Pöschl, U., Shiraiwa, M., and Huisman, A. J.: Technical note: Monte Carlo genetic algorithm (MCGA) for model analysis of multiphase chemical kinetics to determine transport and reaction rate coefficients using multiple experimental data sets, Atmos. Chem. Phys., 17, 8021–8029, https://doi.org/10.5194/acp-17-8021-2017, 2017. a, b, c
Berkemeier, T., Mishra, A., Mattei, C., Huisman, A. J., Krieger, U. K., and
Pöschl, U.: Ozonolysis of Oleic Acid Aerosol Revisited: Multiphase Chemical
Kinetics and Reaction Mechanisms, ACS Earth Space Chem., 5, 3313–3323,
https://doi.org/10.1021/acsearthspacechem.1c00232, 2021. a, b, c, d, e, f, g, h
Berkemeier, T., Krüger, M., Feinberg, A., Müller, M., Pöschl, U., and
Krieger, U.: Generation of surrogate models with artificial neural networks
and polynomial chaos expansion (training data and source code), Zenodo [code, data set],
https://doi.org/10.5281/zenodo.7214880, 2022. a
Bishop, C. M.: Neural networks and their applications, Rev. Sci. Instrum., 65,
1803–1832, 1994. a
Blatman, G. and Sudret, B.: Adaptive sparse polynomial chaos expansion based
on least angle regression, J. Comput. Phys., 230, 2345–2367,
https://doi.org/10.1016/j.jcp.2010.12.021, 2010. a
Booker, A. J., Dennis, J. E., Frank, P. D., Serafini, D. B., Torczon, V., and
Trosset, M. W.: A rigorous framework for optimization of expensive functions
by surrogates, Struct. Multidiscip. O., 17, 1–13, 1999. a
Cavalcanti, F. M., Kozonoe, C. E., Pacheco, K. A., and de Brito Alves, R. M.:
Application of artificial neural networks to chemical and process
engineering, IntechOpen, https://doi.org/10.5772/intechopen.96641, 2021. a
Chib, S. and Greenberg, E.: Understanding the Metropolis-Hastings algorithm,
Am. Stat., 49, 327–335, 1995. a
Chollet, F. et al.: Keras, [code], https://github.com/fchollet/keras (last access: 11 April 2023),
2015. a
Dou, J., Alpert, P. A., Corral Arroyo, P., Luo, B., Schneider, F., Xto, J., Huthwelker, T., Borca, C. N., Henzler, K. D., Raabe, J., Watts, B., Herrmann, H., Peter, T., Ammann, M., and Krieger, U. K.: Photochemical degradation of iron(III) citrate/citric acid aerosol quantified with the combination of three complementary experimental techniques and a kinetic process model, Atmos. Chem. Phys., 21, 315–338, https://doi.org/10.5194/acp-21-315-2021, 2021. a
Esche, E., Weigert, J., Rihm, G. B., Göbel, J., and Repke, J.-U.:
Architectures for neural networks as surrogates for dynamic systems in
chemical engineering, Chem. Eng. Res. Des., 177, 184–199, 2022. a
Feinberg, A., Maliki, M., Stenke, A., Sudret, B., Peter, T., and Winkel, L. H. E.: Mapping the drivers of uncertainty in atmospheric selenium deposition with global sensitivity analysis, Atmos. Chem. Phys., 20, 1363–1390, https://doi.org/10.5194/acp-20-1363-2020, 2020. a
Feldman, J. A. and Ballard, D. H.: Connectionist Models and Their
Applications: Introduction, Cogn. Sci., 6, 205–254,
https://doi.org/10.1207/s15516709cog0901_1, 1982. a
Galeazzo, T. and Shiraiwa, M.: Predicting glass transition temperature and
melting point of organic compounds via machine learning and molecular
embeddings, Environ. Sci. Atmos., 2, 362–374, https://doi.org/10.1039/D1EA00090J, 2022. a
Gallimore, P., Griffiths, P., Pope, F., Reid, J., and Kalberer, M.:
Comprehensive modeling study of ozonolysis of oleic acid aerosol based on
real-time, online measurements of aerosol composition, J. Geophys. Res.-Atmos., 122, 4364–4377, 2017. a, b, c, d, e
Gardner, M. W. and Dorling, S. R.: Artificial neural networks (the multilayer
perceptron) – a review of applications in the atmospheric sciences,
Atmos. Environ., 32, 2627–2636, https://doi.org/10.1016/S1352-2310(97)00447-0,
1998. a
Ghanem, R. G. and Spanos, P. D.: Stochastic finite elements: a spectral
approach, Courier Corporation, ISBN 10 0486428184, ISBN 13 9780486428185, 2003. a, b
Gulli, A. and Pal, S.: Deep learning with Keras, Packt Publishing Ltd, ISBN 10 1787128423, ISBN 13 9781787128422, 2017. a
Harder, P., Watson-Parris, D., Stier, P., Strassel, D., Gauger, N. R., and
Keuper, J.: Physics-informed learning of aerosol microphysics, Environ. Data
Sci., 1, e20, https://doi.org/10.1017/eds.2022.22, 2022. a
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del
Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P.,
Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant,
T. E.: Array programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Hearn, J. D. and Smith, G. D.: Kinetics and product studies for ozonolysis
reactions of organic particles using aerosol CIMS, J. Phys. Chem. A, 108,
10019–10029, 2004. a, b, c
Hecht-Nielsen, R.: Theory of the backpropagation neural network, in: Neural
networks for perception, 65–93, Elsevier, https://doi.org/10.1016/B978-0-12-741252-8.50010-8, 1992. a
Holeňa, M., Linke, D., Rodemerck, U., and Bajer, L.: Neural networks as
surrogate models for measurements in optimization algorithms, in:
International Conference on Analytical and Stochastic Modeling Techniques and
Applications, Cardiff, UK, 14–16 June 2010, 351–366, Springer, https://doi.org/10.1007/978-3-642-13568-2_25, 2010. a
Keller, C. A. and Evans, M. J.: Application of random forest regression to the calculation of gas-phase chemistry within the GEOS-Chem chemistry model v10, Geosci. Model Dev., 12, 1209–1225, https://doi.org/10.5194/gmd-12-1209-2019, 2019. a
Kelp, M. M., Jacob, D. J., Kutz, J. N., Marshall, J. D., and Tessum, C. W.:
Toward Stable, General Machine-Learned Models of the Atmospheric Chemical
System, J. Geophys. Res.-Atmos., 125, e2020JD032759,
https://doi.org/10.1029/2020JD032759, 2020. a
Kelp, M. M., Jacob, D. J., Lin, H., and Sulprizio, M. P.: An online-learned
neural network chemical solver for stable long-term global simulations of
atmospheric chemistry, J. Adv. Model. Earth Sy., 14, e2021MS002926, https://doi.org/10.1029/2021MS002926, 2022. a
Kolb, C. E., Cox, R. A., Abbatt, J. P. D., Ammann, M., Davis, E. J., Donaldson, D. J., Garrett, B. C., George, C., Griffiths, P. T., Hanson, D. R., Kulmala, M., McFiggans, G., Pöschl, U., Riipinen, I., Rossi, M. J., Rudich, Y., Wagner, P. E., Winkler, P. M., Worsnop, D. R., and O’ Dowd, C. D.: An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds, Atmos. Chem. Phys., 10, 10561–10605, https://doi.org/10.5194/acp-10-10561-2010, 2010. a
Kröse, B. and van der Smagt, P.: An Introduction to Neural Networks,
The University of Amsterdam,
https://www.infor.uva.es/~teodoro/neuro-intro.pdf (last access: 11 April 2023),
1996. a, b
Krüger, M., Wilson, J., Wietzoreck, M., Bandowe, B. A. M., Lammel, G.,
Schmidt, B., Pöschl, U., and Berkemeier, T.: Convolutional neural network
prediction of molecular properties for aerosol chemistry and health effects,
Nat. Sci., 2,
e20220016, https://doi.org/10.1002/ntls.20220016, 2022. a
Kuwata, M. and Martin, S. T.: Phase of atmospheric secondary organic material
affects its reactivity, P. Natl. Acad. Sci. USA, 109, 17354–17359,
2012. a
Le Gratiet, L., Marelli, S., and Sudret, B.: Metamodel-based sensitivity
analysis: polynomial chaos expansions and Gaussian processes, in: Handbook of
Uncertainty Quantification, 1289–1325, Springer, https://doi.org/10.1007/978-3-319-12385-1_38, 2017. a
Lu, J., Zhang, H., Yu, J., Shan, D., Qi, J., Chen, J., Song, H., and Yang, M.:
Predicting rate constants of hydroxyl radical reactions with alkanes using
machine learning, J. Chem. Inf. Model., 61, 4259–4265, 2021. a
Lumiaro, E., Todorović, M., Kurten, T., Vehkamäki, H., and Rinke, P.: Predicting gas–particle partitioning coefficients of atmospheric molecules with machine learning, Atmos. Chem. Phys., 21, 13227–13246, https://doi.org/10.5194/acp-21-13227-2021, 2021. a
Marelli, S. and Sudret, B.: UQLab: A framework for uncertainty quantification
in Matlab, in: Vulnerability, uncertainty, and risk: quantification,
mitigation, and management, 2554–2563, American Society of Civil
Engineers, [code], https://doi.org/10.1061/9780784413609.257, 2014. a, b, c, d
McKinney, W. et al.: Data structures for statistical computing in python, in:
Proceedings of the 9th Python in Science Conference, Austin, TX, 28 June–3 July 2010, [code], 445, 51–56,
https://doi.org/10.25080/Majora-92bf1922-00a, 2010. a
Milsom, A., Squires, A. M., Ward, A. D., and Pfrang, C.: The impact of molecular self-organisation on the atmospheric fate of a cooking aerosol proxy, Atmos. Chem. Phys., 22, 4895–4907, https://doi.org/10.5194/acp-22-4895-2022, 2022. a
O’Gorman, P. A. and Dwyer, J. G.: Using Machine Learning to Parameterize
Moist Convection: Potential for Modeling of Climate, Climate
Change, and Extreme Events, J. Adv. Model. Earth Syst., 10, 2548–2563,
https://doi.org/10.1029/2018MS001351, 2018. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.:
Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12,
2825–2830, 2011. a, b
Popescu, M.-C., Balas, V. E., Perescu-Popescu, L., and Mastorakis, N.:
Multilayer perceptron and neural networks, WSEAS Trans. Circuits Syst., 8,
579–588, 2009. a, b
Pöschl, U., Rudich, Y., and Ammann, M.: Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions – Part 1: General equations, parameters, and terminology, Atmos. Chem. Phys., 7, 5989–6023, https://doi.org/10.5194/acp-7-5989-2007, 2007. a, b
Rasp, S., Pritchard, M. S., and Gentine, P.: Deep learning to represent subgrid
processes in climate models, P. Natl. Acad. Sci. USA, 115, 9684–9689,
https://doi.org/10.1073/pnas.1810286115, 2018. a
Robert, C. P. and Casella, G.: The Metropolis-Hastings Algorithm, in: Monte
Carlo statistical methods, 231–283, Springer, https://doi.org/10.1007/978-1-4757-3071-5_6, 1999. a
Roldin, P., Eriksson, A. C., Nordin, E. Z., Hermansson, E., Mogensen, D., Rusanen, A., Boy, M., Swietlicki, E., Svenningsson, B., Zelenyuk, A., and Pagels, J.: Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM, Atmos. Chem. Phys., 14, 7953–7993, https://doi.org/10.5194/acp-14-7953-2014, 2014. a
Rumelhart, D. E., Durbin, R., Golden, R., and Chauvin, Y.: Backpropagation: The
basic theory, in: Backpropagation: Theory, architectures and applications,
1–34, Lawrence Erlbaum Hillsdale, NJ, USA, ISBN 0-8058-1259-8, 1995. a
Sadeeq, M. A. and Abdulazeez, A. M.: Neural networks architectures design, and
applications: A review, in: 2020 International Conference on Advanced Science
and Engineering (ICOASE), Duhok, Iraq, 23–24 December 2020, IEEE, 199–204, https://doi.org/10.1109/ICOASE51841.2020.9436582, 2020. a
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D.,
Saisana, M., and Tarantola, S.: Global sensitivity analysis: the primer, John
Wiley & Sons, ISBN 978-0-470-05997-5, 2008. a
Semeniuk, K. and Dastoor, A.: Current state of atmospheric aerosol
thermodynamics and mass transfer modeling: A review, Atmosphere, 11, 156,
https://doi.org/10.3390/atmos11020156, 2020. a
Shiraiwa, M., Pfrang, C., and Pöschl, U.: Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB): the influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone, Atmos. Chem. Phys., 10, 3673–3691, https://doi.org/10.5194/acp-10-3673-2010, 2010. a, b
Shiraiwa, M., Ammann, M., Koop, T., and Pöschl, U.: Gas uptake and chemical
aging of semisolid organic aerosol particles, P. Natl. Acad. Sci. USA,
108, 11003–11008, 2011. a
Shiraiwa, M., Pfrang, C., Koop, T., and Pöschl, U.: Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP): linking condensation, evaporation and chemical reactions of organics, oxidants and water, Atmos. Chem. Phys., 12, 2777–2794, https://doi.org/10.5194/acp-12-2777-2012, 2012. a
Shiraiwa, M., Berkemeier, T., Schilling-Fahnestock, K. A., Seinfeld, J. H., and Pöschl, U.: Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol, Atmos. Chem. Phys., 14, 8323–8341, https://doi.org/10.5194/acp-14-8323-2014, 2014. a
Sobol’, I. M.: Global sensitivity indices for nonlinear mathematical models and
their Monte Carlo estimates, Math. Comput. Simulat., 55, 271–280,
https://doi.org/10.1016/S0378-4754(00)00270-6, 2001. a
Stone, M.: Cross-validatory choice and assessment of statistical predictions,
J. R. Stat. Soc. B, 36, 111–133, 1974. a
Sturm, P. O. and Wexler, A. S.: Conservation laws in a neural network architecture: enforcing the atom balance of a Julia-based photochemical model (v0.2.0), Geosci. Model Dev., 15, 3417–3431, https://doi.org/10.5194/gmd-15-3417-2022, 2022. a
Sudret, B.: Global sensitivity analysis using polynomial chaos expansions,
Reliab. Eng. Syst. Safe., 93, 964–979, https://doi.org/10.1016/j.ress.2007.04.002,
2008. a, b, c, d, e
Thackray, C. P., Friedman, C. L., Zhang, Y., and Selin, N. E.: Quantitative
Assessment of Parametric Uncertainty in Northern Hemisphere PAH
Concentrations, Environ. Sci. Technol., 49, 9185–9193,
https://doi.org/10.1021/acs.est.5b01823, 2015. a
Tikkanen, O.-P., Hämäläinen, V., Rovelli, G., Lipponen, A., Shiraiwa, M., Reid, J. P., Lehtinen, K. E. J., and Yli-Juuti, T.: Optimization of process models for determining volatility distribution and viscosity of organic aerosols from isothermal particle evaporation data, Atmos. Chem. Phys., 19, 9333–9350, https://doi.org/10.5194/acp-19-9333-2019, 2019. a
Tripathy, R. K. and Bilionis, I.: Deep UQ: Learning deep neural network
surrogate models for high dimensional uncertainty quantification, J. Comput.
Phys., 375, 565–588, 2018. a
Vu, K. K., d’Ambrosio, C., Hamadi, Y., and Liberti, L.: Surrogate-based methods
for black-box optimization, Int. T. Oper. Res., 24, 393–424, 2017. a
Wei, J., Fang, T., Lakey, P. S., and Shiraiwa, M.: Iron-Facilitated Organic
Radical Formation from Secondary Organic Aerosols in Surrogate Lung Fluid,
Environ. Sci. Technol., 56, 7234–7243, https://doi.org/10.1021/acs.est.1c04334, 2021. a
Wong, T.-T. and Yeh, P.-Y.: Reliable accuracy estimates from k-fold cross
validation, IEEE T. Knowl. Data En., 32, 1586–1594,
https://doi.org/10.1109/TKDE.2019.2912815, 2020. a
Xia, D., Chen, J., Fu, Z., Xu, T., Wang, Z., Liu, W., Xie, H.-B., and
Peijnenburg, W. J.: Potential application of machine-learning-based quantum
chemical methods in environmental chemistry, Environ. Sci. Technol., 56,
2115–2123, 2022. a
Xiu, D. and Karniadakis, G. E.: The Wiener–Askey polynomial chaos for
stochastic differential equations, SIAM J. Sci. Comput., 24, 619–644, 2002.
a
Xu, H., Zhang, T., Luo, Y., Huang, X., and Xue, W.: Parameter calibration in global soil carbon models using surrogate-based optimization, Geosci. Model Dev., 11, 3027–3044, https://doi.org/10.5194/gmd-11-3027-2018, 2018.
a, b
Ziemann, P. J.: Aerosol products, mechanisms, and kinetics of heterogeneous
reactions of ozone with oleic acid in pure and mixed particles, Faraday
Discuss., 130, 469–490, 2005. a, b, c