Diagnosis and treatment of the alpha-Gal syndrome | JAA

Research on AGS was funded by Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación MCIN/AEI/10.13039/501100011033, Spain and EU-FEDER (Grant BIOGAL PID2020-116761GB-I00). R. Vaz-Rodrigues was supported by a doctoral contract (2022/20675) from Universidad de Castilla-La Mancha (UCLM), Spain, co-financed by the European Social Fund (ESF). L. Mazuecos was supported by a post-doctoral grant (2021-POST-32002) from UCLM co-financed by ESF.

1. Hils M, Wölbing F, Hilger C, Fischer J, Hoffard N, Biedermann T. The history of carbohydrates in type I allergy. Front Immunol. 2020;11(10):1–14. doi:10.3389/fimmu.2020.586924

2. Hilger C, Fischer J, Wölbing F, Biedermann T. Role and mechanism of Galactose-Alpha-1,3-Galactose in the elicitation of delayed anaphylactic reactions to red meat. Curr Allergy and Asthma Rep. 2019;19(1):1–11. doi:10.1007/s11882-019-0835-9

3. Galili U. Evolution in primates by “Catastrophic-selection” interplay between enveloped virus epidemics, mutated genes of enzymes synthesizing carbohydrate antigens, and natural anti-carbohydrate antibodies. Am J Phys Anthropol. 2019;168(2):352–363. doi:10.1002/ajpa.23745

4. Commins SP, Satinover SM, Hosen J, et al. Delayed anaphylaxis, angioedema, or urticaria after consumption of red meat in patients with IgE antibodies specific for galactose-α-1,3-galactose. J Allergy Clin Immunol. 2009;123(2):426–433.e2. doi:10.1016/j.jaci.2008.10.052

5. Fischer J, Yazdi AS, Biedermann T. Clinical spectrum of α-Gal syndrome: from immediate-type to delayed immediate-type reactions to mammalian innards and meat. Allergo J Int. 2016;25(2):55–62. doi:10.1007/s40629-016-0099-z

6. Çelebioğlu E, Akarsu A, Şahiner ÜM. IgE mediated food allergy throughout the life. Turk J Med Sci. 2021;51(1):49–60. doi:10.3906/sag-2006-95

7. Fischer J, Reepschläger T, Schricker T, Raap U. Alpha-gal syndrome: overview of clinical presentation and pathophysiology. Hautarzt. 2022;73(3):195–200. doi:10.1007/s00105-022-04943-4

8. Chinuki Y, Takahashi H, Morita E. IgE antibodies to galactose-α-1,3-galactose, an epitope of red meat allergen, cross-react with a novel flounder roe allergen. J Investig Allergol Clin Immunol. 2021;32(4):1–7. doi:10.18176/jiaci.0754

9. Dunkman WJ, Rycek W, Manning MW. What does a red meat allergy have to do with anesthesia? Perioperative management of alpha-gal syndrome. Anesth Analg. 2019;129(5):1242–1248. doi:10.1213/ANE.0000000000003460

10. Cabezas-Cruz A, Hodžić A, Román-Carrasco P, et al. Environmental and molecular drivers of the α-Gal syndrome. Front Immunol. 2019;10(5):1–12. doi:10.3389/fimmu.2019.01210

11. Cabezas-Cruz A, Valdés J, de la Fuente J. Cancer research meets tick vectors for infectious diseases. Lancet Infect Dis. 2014;14(10):916–917. doi:10.1016/S1473-3099(14)70902-8

12. Chung CH, Mirakhur B, Chan E, et al. Cetuximab-induced anaphylaxis and IgE specific for Galactose-α-1,3-Galactose. N Engl J Med. 2008;358(11):1109–1117. doi:10.1056/nejmoa074943

13. de la Fuente J, Pacheco I, Villar M, Cabezas-Cruz A. The alpha-Gal syndrome: new insights into the tick-host conflict and cooperation. Parasit Vectors. 2019;12(1):1–5. doi:10.1186/s13071-019-3413-z

14. Rodríguez Y, Rojas M, Gershwin ME, Anaya JM. Tick-borne diseases and autoimmunity: a comprehensive review. J Autoimmun. 2018;88(3):21–42. doi:10.1016/j.jaut.2017.11.007

15. Cabezas-Cruz A, Mateos-Hernández L, Chmelař J, Villar M, de la Fuente J. Salivary prostaglandin E2: role in tick-induced allergy to red meat. Trends Parasitol. 2017;33(7):495–498. doi:10.1016/j.pt.2017.03.004

16. Román-Carrasco P, Hemmer W, Cabezas-Cruz A, Hodžić A, de la Fuente J, Swoboda I. The α-Gal syndrome and potential mechanisms. Front Allergy. 2021;2(12):1–17. doi:10.3389/falgy.2021.783279

17. Ramasamy R. Mosquito vector proteins homologous to α1-3 galactosyl transferases of tick vectors in the context of protective immunity against malaria and hypersensitivity to vector bites. Parasit Vectors. 2021;14(1):1–6. doi:10.1186/s13071-021-04801-7

18. Wilson JM, Schuyler AJ, Schroeder N, Platts-Mills TAE. Galactose-α-1,3-Galactose: atypical food allergen or model IgE hypersensitivity? Curr Allergy Asthma Rep. 2017;17(1):3–9. doi:10.1007/s11882-017-0672-7

19. Cabezas-Cruz A, Hodžić A, Mateos-Hernandez L, Contreras M, De La Fuente J. Tick-human interactions: from allergic klendusity to the α-Gal syndrome. Biochem J. 2021;478(9):1783–1794. doi:10.1042/BCJ20200915

20. Carson AS, Gardner A, Iweala OI. Where’s the beef? Understanding allergic responses to red meat in alpha-gal syndrome. J Immunol. 2022;208(2):267–277. doi:10.4049/jimmunol.2100712

21. Wong XL, Sebaratnam DF. Mammalian meat allergy. Int J Dermatol. 2018;57(12):1433–1436. doi:10.1111/ijd.14208

22. Young I, Prematunge C, Pussegoda K, Corrin T, Waddell L. Tick exposures and alpha-gal syndrome: a systematic review of the evidence. Ticks Tick Borne Dis. 2021;12(3):101674. doi:10.1016/j.ttbdis.2021.101674

23. Diaz JH. Red meat allergies after Lone Star tick (Amblyomma americanum) bites. South Med J. 2020;113(6):267–274. doi:10.14423/SMJ.0000000000001102

24. van Nunen S. Tick-induced allergies: mammalian meat allergy, tick anaphylaxis and their significance. Asia Pac Allergy. 2015;5(1):3–16. doi:10.5415/apallergy.2015.5.1.3

25. Platts-Mills TAE, Commins SP, Biedermann T, et al. On the cause and consequences of IgE to galactose-α-1,3-galactose: a report from the National Institute of Allergy and Infectious Diseases Workshop on understanding IgE-mediated mammalian meat allergy. J Allergy Clin Immunol. 2020;145(4):1061–1071. doi:10.1016/j.jaci.2020.01.047

26. Joral A, Azketa N, Sanchez P, et al. The quantification of IgG specific to α-Gal could be used as a risk marker for suffering mammalian meat allergy. Foods. 2022;11(3):466. doi:10.3390/foods11030466

27. McGain F, Welton R, Solley GO, Winkel KD. First fatalities from tick bite anaphylaxis. J Allergy Clin Immunol Pract. 2016;2(7):309–314. doi:10.1080/21674086.1933.11925177

28. Mullins RJ, Wainstein BK, Barnes EH, Liew WK, Campbell DE. Increases in anaphylaxis fatalities in Australia from 1997 to 2013. Clin Exp Allergy. 2016;46(8):1099–1110. doi:10.1111/cea.12748

29. Commins SP. Invited commentary: alpha-gal allergy: tip of the iceberg to a pivotal immune response. Curr Allergy Asthma Rep. 2016;16(9):1–3. doi:10.1007/s11882-016-0641-6

30. Levin M, Apostolovic D, Biedermann T, et al. Galactose α-1,3-galactose phenotypes: lessons from various patient populations. Ann Allergy Asthma Immunol. 2019;122(6):598–602. doi:10.1016/j.anai.2019.03.021

31. Zurbano-Azqueta L, Antón-Casas E, Duque-Gómez S, Jiménez-Gómez I, Fernández-Pellón L, López-Gutiérrez J. Alpha-gal syndrome. Allergy to red meat and gelatin. Rev Clin Esp. 2021. doi:10.1016/j.rceng.2021.06.005

32. Mateo-Borrega MB, Garcia B, Larramendi CH, et al. Ige-mediated sensitization to galactose-α-1,3-galactose (α-gal) in urticaria and anaphylaxis in Spain: geographical variations and risk factors. J Investig Allergol Clin Immunol. 2019;29(6):436–443. doi:10.18176/jiaci.0373

33. Fischer J, Lupberger E, Hebsaker J, et al. Prevalence of type I sensitization to alpha-gal in forest service employees and hunters. Allergy. 2017;72(10):1540–1547. doi:10.1111/all.13156

34. Villalta D, Pantarotto L, Da Re M, et al. High prevalence of sIgE to Galactose-α1,3-galactose in rural pre-Alps area: a cross-sectional study. Clin Exp Allergy. 2016;46(2):377–380. doi:10.1111/cea.12655

35. Mitchell CL, Lin FC, Vaughn M, Apperson CS, Meshnick SR, Commins SP. Association between Lone Star tick bites and increased alpha-gal sensitization: evidence from a prospective cohort of outdoor workers. Parasit Vectors. 2020;13(1):1–4. doi:10.1186/s13071-020-04343-4

36. Venturini M, Lobera T, Sebastián A, Portillo A, Oteo JA. IgE to α-Gal in foresters and forest workers from La Rioja, North of Spain. J Investig Allergol Clin Immunol. 2018;28(2):106–112. doi:10.18176/jiaci.0218

37. Cabezas-Cruz A, de la Fuente J, Fischer J. Prevalence of type I sensitization to alpha-gal in forest service employees and hunters: is the blood type an overlooked risk factor in epidemiological studies of the α-Gal syndrome? Allergy. 2017;72(12):2044–2047. doi:10.1111/all.13206

38. Cabezas-Cruz A, Mateos-Hernández L, Alberdi P, et al. Effect of blood type on anti-a-Gal immunity and the incidence of infectious diseases. Exp Mol Med. 2017;49(3):e301–e301. doi:10.1038/emm.2016.164

39. Yilmaz B, Portugal S, Tran TM, et al. Gut microbiota elicits a protective immune response against malaria transmission. Cell. 2014;159(6):1277–1289. doi:10.1016/j.cell.2014.10.053

40. Urra JM, Ferreras-Colino E, Contreras M, et al. The antibody response to the glycan α-Gal correlates with COVID-19 disease symptoms. J Med Virol. 2021;93(4):2065–2075. doi:10.1002/jmv.26575

41. Steinke JW, Platts-Mills TAE, Commins SP. The alpha-gal story: lessons learned from connecting the dots. J Allergy Clin Immunol. 2015;135(3):589–596. doi:10.1016/j.jaci.2014.12.1947

42. Commins SP. Diagnosis & management of alpha-gal syndrome: lessons from 2500 patients. Expert Rev Clin Immunol. 2020;16(7):667–677. doi:10.1080/1744666X.2020.1782745

43. Lopes JP, Sicherer S. Food allergy: epidemiology, pathogenesis, diagnosis, prevention, and treatment. Curr Opin Immunol. 2020;66:57–64. doi:10.1016/j.coi.2020.03.014

44. Antunes J, Borrego L, Romeira A, Pinto P. Skin prick tests and allergy diagnosis. Allergol Immunopathol. 2009;37(3):155–164. doi:10.1016/S0301-0546(09)71728-8

45. Shroba J, Rath N, Barnes C. Possible role of environmental factors in the development of food allergies. Clin Rev Allergy Immunol. 2019;57(3):303–311. doi:10.1007/s12016-018-8703-2

46. Jacquenet S, Moneret-Vautrin DA, Bihain BE. Mammalian meat-induced anaphylaxis: clinical relevance of anti-galactose-α-1,3-galactose IgE confirmed by means of skin tests to cetuximab. J Allergy Clin Immunol. 2009;124(3):603–605. doi:10.1016/j.jaci.2009.06.014

47. Mateos-Hernández L, Villar M, Moral A, et al. Tick-host conflict: immunoglobulin E antibodies to tick proteins in patients with anaphylaxis to tick bite. Oncotarget. 2017;8(13):20630–20644. doi:10.18632/oncotarget.15243

48. Hocaoglu AB, Cipe F, Aydogmus C. Are skin prick tests really safe? A case of anaphylaxis caused by skin prick testing with inhalant allergens. Allergol Immunopathol. 2015;43(2):215–216. doi:10.1016/j.aller.2013.09.011

49. Alnæs M. Anaphylaxis following prick-by-prick testing with peanut. Clin Case Rep. 2020;8(12):2366–2368. doi:10.1002/ccr3.3154

50. Chiriac AM, Bousquet J, Demoly P. In vivo methods for the study and diagnosis of allergy. In: Burks AW, Holgate ST, O´Hehir RE, et al. editors. Middleton’s Allergy: Principles and Practice. 9th ed. Elsevier; 2020:1119–1132. doi:10.1016/B978-0-323-08593-9.00071-1

51. Calvani M, Bianchi A, Reginelli C, Peresso M, Testa A. Oral food challenge. Medicina. 2019;55(10):1–16. doi:10.3390/medicina55100651

52. de la Fuente J, Cabezas-Cruz A, Pacheco I. Alpha-gal syndrome: challenges to understanding sensitization and clinical reactions to alpha-gal. Expert Rev Mol Diagn. 2020;20(9):905–911. doi:10.1080/14737159.2020.1792781

53. Mehlich J, Fischer J, Hilger C, et al. The basophil activation test differentiates between patients with alpha-gal syndrome and asymptomatic alpha-gal sensitization. J Allergy Clin Immunol. 2019;143(1):182–189. doi:10.1016/j.jaci.2018.06.049

54. Mabelane T, Basera W, Botha M, Thomas HF, Ramjith J, Levin ME. Predictive values of alpha-gal IgE levels and alpha-gal IgE: total IgE ratio and oral food challenge proven meat allergy in a population with a high prevalence of reported red meat allergy. Pediatr Allergy Immunol. 2018;29(8):841–849. doi:10.1111/pai.12969

55. Eberlein B, Mehlich J, Reidenbach K, et al. Negative oral provocation test with porcine pancreatic enzyme plus cofactors despite confirmed α-gal syndrome. J Investig Allergol Clin Immunol. 2020;30(6):468–469. doi:10.18176/jiaci.0513

56. Morisset M, Richard C, Astier C, et al. Anaphylaxis to pork kidney is related to IgE antibodies specific for galactose-alpha-1,3-galactose. Allergy. 2012;67(5):699–704. doi:10.1111/j.1398-9995.2012.02799.x

57. Fischer J, Biedermann T. Delayed immediate-type hypersensitivity to red meat and innards: current insights into a novel disease entity. J Dtsch Dermatol Ges. 2016;14(1):38–43. doi:10.1111/ddg.12821

58. Jappe U, Minge S, Kreft B, et al. Meat allergy associated with galactosyl-α-(1,3)-galactose (α-Gal)-Closing diagnostic gaps by anti-α-Gal IgE immune profiling. Allergy. 2018;73(1):93–105. doi:10.1111/all.13238

59. Leung DYM, Szefler SJ. Tick bites: a common cause of IgE antibodies to alpha-gal. J Allergy Clin Immunol. 2011;127(5):1131–1132. doi:10.1016/j.jaci.2011.03.019

60. Chinuki Y, Morita E. Alpha-Gal-containing biologics and anaphylaxis. Allergol Int. 2019;68(3):296–300. doi:10.1016/j.alit.2019.04.001

61. Mabelane T, Ogunbanjo GA. Ingestion of mammalian meat and alpha-gal allergy: clinical relevance in primary care. Afr J Prim Health Care Fam Med. 2019;11(1):1–5. doi:10.4102/phcfm.v11i1.1901

62. Park Y, Kim D, Boorgula GD, et al. Alpha-gal and cross-reactive carbohydrate determinants in the N-Glycans of salivary glands in the Lone Star Tick, Amblyomma americanum. Vaccines. 2020;8(1):1–16. doi:10.3390/vaccines8010018

63. Apostolovic D, Grundström J, Perusko M, et al. Course of IgE to α-Gal in a Swedish population of α-Gal syndrome patients. Clin Transl Allergy. 2021;11(10):2–4. doi:10.1002/clt2.12087

64. Gonzalez-Quintela A, Dam Laursen AS, Vidal C, Skaaby T, Gude F, Linneberg A. IgE antibodies to alpha-gal in the general adult population: relationship with tick bites, atopy, and cat ownership. Clin Exp Allergy. 2014;44(8):1061–1068. doi:10.1111/cea.12326

65. Wilson JM, Keshavarz B, Retterer M, et al. A dynamic relationship between two regional causes of IgE-mediated anaphylaxis: α-Gal syndrome and imported fire ant. J Allergy Clin Immunol. 2021;147(2):643–652.e7. doi:10.1016/j.jaci.2020.05.034

66. Passanisi S, Lombardo F, Crisafulli G, Salzano G, Aversa T, Pajno GB. Novel diagnostic techniques and therapeutic strategies for IgE-mediated food allergy. Allergy Asthma Proc. 2021;42(2):124–130. doi:10.2500/AAP.2021.42.200129

67. Foong RX, Santos AF. Biomarkers of diagnosis and resolution of food allergy. Pediatr Allergy Immunol. 2021;32(2):223–233. doi:10.1111/pai.13389

68. Fernandez-Santamaria R, Bogas G, Salas M, et al. The role of basophil activation test in drug allergy. Curr Treat Options Allergy. 2021;8(4):298–313. doi:10.1007/s40521-021-00294-y

69. Schmidle P, Eberlein B, Darsow U, Kugler C, Biedermann T, Brockow K. α-Gal-Syndrom – nicht nur eine Fleischallergie. Allergologie. 2021;44(4):288–296. doi:10.5414/ALX02185

70. Santos AF, Kulis MD, Sampson HA. Bringing the next generation of food allergy diagnostics into the clinic. J Allergy Clin Immunol Pract. 2022;10(1):1–9. doi:10.1016/j.jaip.2021.09.009

71. Santos AF, Lack G. Basophil activation test: food challenge in a test tube or specialist research tool? Clin Transl Allergy. 2016;6(1):1–9. doi:10.1186/s13601-016-0098-7

72. Wilson JM, Platts-Mills TAE. IgE to galactose-α-1,3-galactose and the α-Gal syndrome: insights from basophil activation testing. J Allergy Clin Immunol. 2018;143(1):101–103. doi:10.1016/j.jaci.2018.10.029

73. Doña I, Ariza A, Fernández TD, Torres MJ. Basophil activation test for allergy diagnosis. J Vis Exp. 2021;171(5):e62600. doi:10.3791/62600

74. Ebo DG, Bridts CH, Mertens CH, et al. Principles, potential, and limitations of ex vivo basophil activation by flow cytometry in allergology: a narrative review. J Allergy Clin Immunol. 2021;147(4):1143–1153. doi:10.1016/j.jaci.2020.10.027

75. Santos AF, Alpan O, Hoffmann HJ. Basophil activation test: mechanisms and considerations for use in clinical trials and clinical practice. Allergy. 2021;76(11):2420–2432. doi:10.1111/all.14747

76. Directive 98/79/EC on in vitro diagnostic medical devices; 1998. Available from: http://data.europa.eu/eli/dir/1998/79/oj. Accessed June 22, 2022.

77. Regulation (EU) 2017/746 on in vitro diagnostic medical devices; 2022. Available from: http://data.europa.eu/eli/reg/2017/746/2022-01-28. Accessed June 22, 2022.

78. Bahri R, Bulfone-Paus S. Mast Cell Activation Test (MAT). Methods Mol Biol. 2020;2163:227–238. doi:10.1007/978-1-0716-0696-4_19

79. Bahri R, Custovic A, Korosec P, et al. Mast cell activation test in the diagnosis of allergic disease and anaphylaxis. J Allergy Clin Immunol. 2018;142(2):485–496.e16. doi:10.1016/j.jaci.2018.01.043

80. Chirumbolo S, Bjørklund G, Sboarina A, Vella A. The role of basophils as innate immune regulatory cells in allergy and immunotherapy. Hum Vaccines Immunother. 2018;14(4):815–831. doi:10.1080/21645515.2017.1417711

81. Elst J, Sabato V, van der Poorten MLM, et al. Basophil and mast cell activation tests by flow cytometry in immediate drug hypersensitivity: diagnosis and beyond. J Immunol Methods. 2021;495(4):113050. doi:10.1016/j.jim.2021.113050

82. Elst J, van der Poorten M-LM, van Gasse AL, et al. Mast cell activation tests by flow cytometry: a new diagnostic asset? Clin Exp Allergy. 2021;51(11):1482–1500. doi:10.1111/cea.13984

83. Kirshenbaum AS, Yin Y, Bruce Sundstrom J, Bandara G, Metcalfe DD. Description and characterization of a novel human mast cell line for scientific study. Int J Mol Sci. 2019;20(22):5520. doi:10.3390/ijms20225520

84. Chirumbolo S, Bjørklund G, Vella A. Mast cell activation test versus basophil activation test and related competing issues. J Allergy Clin Immunol. 2018;142(3):1018–1019. doi:10.1016/j.jaci.2018.06.020

85. Gray CL. Current controversies and future prospects for peanut allergy prevention, diagnosis and therapies. J Asthma Allergy. 2020;13:51–66. doi:10.2147/JAA.S196268

86. Larsen LF, Juel-Berg N, Hansen KS, et al. A comparative study on basophil activation test, histamine release assay, and passive sensitization histamine release assay in the diagnosis of peanut allergy. Allergy. 2018;73(1):137–144. doi:10.1111/all.13243

87. de la Fuente J, Pacheco I, Contreras M, Mateos-Hernández L, Villar M, Cabezas-Cruz A. Guillain-Barré and alpha-gal syndromes: saccharides-induced immune responses. Explor Res Hypothesis Med. 2019;4(4):87–89. doi:10.14218/erhm.2019.00027

88. Villar M, Pacheco I, Mateos-Hernández L, et al. Characterization of tick salivary gland and saliva alphagalactome reveals candidate alpha-gal syndrome disease biomarkers. Expert Rev Proteomics. 2021;18(12):1099–1116. doi:10.1080/14789450.2021.2018305

89. Cabezas-Cruz A, Mateos-Hernández L, Pérez-Cruz M, et al. Regulation of the immune response to α-Gal and vector-borne diseases. Trends Parasitol. 2015;31(10):470–476. doi:10.1016/j.pt.2015.06.016

90. Richens JG, Lee CM, Johri S. Improving the accuracy of medical diagnosis with causal machine learning. Nat Commun. 2020;11:3923. doi:10.1038/s41467-020-17419-7

91. Geng W, Qin X, Yang T, et al. Model-based reasoning of clinical diagnosis in integrative medicine: real-world methodological study of electronic medical records and natural language processing methods. JMIR Med Inform. 2020;8(12):e23082. doi:10.2196/23082

92. Saretta F, Giovannini M, Mori F, et al. Alpha-gal syndrome in children: peculiarities of a “Tick-Borne” allergic disease. Front Pediatr. 2021;9(12). doi:10.3389/fped.2021.801753

93. Wilson JM, Platts-Mills TAE. Red meat allergy in children and adults. Curr Opin Allergy Clin Immunol. 2019;19(3):229–235. doi:10.1097/ACI.0000000000000523

94. Platts-Mills TAE, Li R, Keshavarz B, Smith AR, Wilson JM. Diagnosis and management of patients with the α-Gal syndrome. J Allergy Clin Immunol Pract. 2020;8(1):15–23. doi:10.1016/j.jaip.2019.09.017

95. Nwamara U, Kaplan MC, Mason N, Ingemi AI. A retrospective evaluation of heparin product reactions in patients with alpha-gal allergies. Ticks Tick Borne Dis. 2022;13(1):101869. doi:10.1016/j.ttbdis.2021.101869

96. Wen S, Unuma K, Chinuki Y, Hikino H, Uemura K. Fatal anaphylaxis due to alpha-gal syndrome after initial cetuximab administration: the first forensic case report. Leg Med. 2021;51(3):101878. doi:10.1016/j.legalmed.2021.101878

97. McHugh K, Repanshek Z. Anaphylaxis: emergency Department Treatment. Emerg Med Clin North Am. 2022;40(1):19–32. doi:10.1016/j.emc.2021.08.004

98. Lee YH, Kasper LH. Immune responses of different mouse strains after challenge with equivalent lethal doses of Toxoplasma gondii. Parasite. 2004;11:89–97. doi:10.1051/parasite/200411189

99. Daripa B, Lucchese S. Novel case presentation of abulia after Lone Star tick bite as evidenced by raised titers of alpha-gal specific IgM immunoglobulin and a possibility of alpha-gal driven hypothalamic dysfunction as the pathomechanism. Cureus. 2022;14(4):e24551. doi:10.7759/cureus.24551

100. Wuerdeman MF, Harrison JM. A case of tick-bite-induced red meat allergy. Mil Med. 2014;179(4):e473–e475. doi:10.7205/MILMED-D-13-00369

101. Jackson WL. Mammalian meat allergy following a tick bite: a case report. Oxf Med Case Rep. 2018;2018(2):58–60. doi:10.1093/omcr/omx098

102. Kaplan AC, Carson MP. Diagnosing meat allergy after tick bite without delay. J Am Board Fam Med. 2018;31(4):650–652. doi:10.3122/jabfm.2018.04.170425

103. Khoury JK, Khoury NC, Schaefer D, Chitnis A, Hassen GW. A tick-acquired red meat allergy. Am J Emerg Med. 2018;36(2):341.e1–341.e3. doi:10.1016/j.ajem.2017.10.044

104. Brzozowska M, Mokrzycka N, Porębski G. Alpha-gal syndrome: the first report in Poland. Cent Eur J Immunol. 2021;46(3):398–400. doi:10.5114/ceji.2021.108766

105. Anemüller W, Mohr M, Brans R, Homann A, Jappe U. Alpha-Gal-assoziierte verzögerteAnaphylaxie gegen rotes Fleischals Berufskrankheit. Hautarzt. 2018;69(10):848–852. doi:10.1007/s00105-018-4224-4

106. Ghahramani GK, Temprano J. Tick bite-related meat allergy as a cause of chronic urticaria, angioedema, and anaphylaxis in endemic areas. Int J Dermatol. 2015;54(2):e64–e65. doi:10.1111/ijd.12672

107. Wen L, Zhou J, Yin J, et al. Delayed anaphylaxis to red meat associated with specific IgE antibodies to galactose. Allergy Asthma Immunol Res. 2014;7(1):92–94. doi:10.4168/aair.2015.7.1.92

108. Zhang B, Hauk M, Clyne J. Alpha-gal antibody due to Lone Star tick bite, a unique case of allergic reaction. IDCases. 2020;22:e00908. doi:10.1016/j.idcr.2020.e00908

109. Saleem M, Nilsson C. A pediatric case of tick-bite–Induced meat allergy and recall urticaria. Clin Case Rep. 2021;9(9):1–4. doi:10.1002/ccr3.4773

110. Guillier A, Fauconneau A, de Barruel F, Guez S, Doutre MS. Allergic hypersensitivity to red meat induced by tick bites: a French case report. Eur J Dermatol. 2015;25(3):275–276. doi:10.1684/ejd.2015.2533

111. Brenner DM, Lacy BE. Antispasmodics for chronic abdominal pain: analysis of North American treatment options. Am J Gastroenterol. 2021;116(8):1587–1600. doi:10.14309/ajg.0000000000001266

112. Bircher AJ, Hofmeier KS, Link S, Heijnen I. Food allergy to the carbohydrate galactose-alpha-1,3-galactose (alpha-gal): four case reports and a review. Eur J Dermatol. 2017;27(1):3–9. doi:10.1684/ejd.2016.2908

113. Emmanuel A, Quigley EMM, Simrén M, et al. Factors affecting satisfaction with treatment in European women with chronic constipation: an internet survey. United Eur Gastroenterol J. 2013;1(5):375–384. doi:10.1177/2050640613494200

114. Galili U. Significance of the evolutionary α1,3-Galactosyltransferase (GGTA1) gene inactivation in preventing extinction of apes and old world monkeys. J Mol Evol. 2015;80(1):1–9. doi:10.1007/s00239-014-9652-x

115. Contreras M, Pacheco I, Alberdi P, et al. Allergic reactions and immunity in response to tick salivary biogenic substances and red meat consumption in the Zebrafish Model. Front Cell Infect Microbiol. 2020;10(3). doi:10.3389/fcimb.2020.00078

116. Pacheco I, Contreras M, Villar M, et al. Vaccination with alpha-gal protects against mycobacterial infection in the zebrafish model of tuberculosis. Vaccines. 2020;8(2):195. doi:10.3390/vaccines8020195

117. Bryda EC. The mighty mouse: the impact of rodents on advances in biomedical research. Mo Med. 2013;110(3):207–211.

118. Fujiwara S. Humanized mice: a brief overview on their diverse applications in biomedical research. J Cell Physiol. 2018;233(4):2889–2901. doi:10.1002/jcp.26022

119. Koike C, Fung JJ, Geller DA, et al. Molecular basis of evolutionary loss of the α1,3-Galactosyltransferase gene in higher primates. J Biol Chem. 2002;277(12):10114–10120. doi:10.1074/jbc.M110527200

120. Dai Y, Vaught TD, Boone J, et al. Targeted disruption of the α1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol. 2002;20(3):251–255. doi:10.1038/nbt0302-251

121. Tearle RG, Tange MJ, Zannettino ZL, et al. The alpha-1,3-galactosyltransferase knockout mouse. Implications for xenotransplantation. Transplantation. 1996;61(1):13–19. doi:10.1097/00007890-199601150-00004

122. Bryant CD. The blessings and curses of C57BL/6 substrains in mouse genetic studies. Ann N Y Acad Sci. 2011;1245(1):31–33. doi:10.1111/j.1749-6632.2011.06325.x

123. Choudhary SK, Karim S, Iweala OI, et al. Tick salivary gland extract induces alpha-gal syndrome in alpha-gal deficient mice. Immun Inflamm Dis. 2021;9(3):984–990. doi:10.1002/iid3.457

124. Araujo RN, Franco PF, Rodrigues H, et al. Amblyomma sculptum tick saliva: α-Gal identification, antibody response and possible association with red meat allergy in Brazil. Int J Parasitol. 2016;46(3):213–220. doi:10.1016/j.ijpara.2015.12.005

125. Ayala EV, Rodrigues Da Cunha G, Azevedo MA, et al. C57BL/6 α-1,3-Galactosyltransferase knockout mouse as an animal model for experimental Chagas disease. ACS Infect Dis. 2020;6(7):1807–1815. doi:10.1021/acsinfecdis.0c00061

126. Chandrasekhar JL, Cox KM, Loo WM, Qiao H, Tung KS, Erickson LD. Cutaneous exposure to clinically relevant Lone Star ticks promotes IgE production and hypersensitivity through CD4 + T cell– and MyD88-dependent pathways in mice. J Immunol. 2019;203(4):813–824. doi:10.4049/jimmunol.1801156

127. Unal D, Coskun R, Demir S, Gelincik A, Colakoglu B, Buyukozturk S. Successful beef desensitization in 2 adult patients with a delayed-type reaction to red meat. J Allergy Clin Immunol Pract. 2017;5(2):502–503. doi:10.1016/j.jaip.2016.12.008

128. Michelet M, Balbino B, Guilleminault L, Reber LL. IgE in the pathophysiology and therapy of food allergy. Eur J Immunol. 2021;51(3):531–543. doi:10.1002/eji.202048833

129. Yucel E, Sipahi Cimen S, Varol S, Suleyman A, Ozdemir C, Tamay ZU. Red meat desensitization in a child with delayed anaphylaxis due to alpha-Gal allergy. Pediatr Allergy Immunol. 2019;30(7):771–773. doi:10.1111/pai.13092

130. Zhubi-Bakija F, Bajraktari G, Bytyçi I, et al. The impact of type of dietary protein, animal versus vegetable, in modifying cardiometabolic risk factors: a position paper from the International Lipid Expert Panel (ILEP). Clin Nutr. 2021;40(1):255–276. doi:10.1016/j.clnu.2020.05.017

131. Abenavoli L, Boccuto L, Federico A, et al. Diet and non-alcoholic fatty liver disease: the Mediterranean way. Int J Environ Res Public Health. 2019;16(17):3011. doi:10.3390/ijerph16173011

132. Badina L, Burlo F, Belluzzi B, Babich S, Berti I, Barbi E. Life-threatening anaphylaxis in children with cow’s milk allergy during oral immunotherapy and after treatment failure. Immun Inflamm Dis. 2022;10(2):e607. doi:10.1002/iid3.607

133. Guilleminault L, Michelet M, Reber LL. Combining Anti-IgE monoclonal antibodies and oral immunotherapy for the treatment of food allergy. Clin Rev Allergy Immunol. 2022;62(1):216–231. doi:10.1007/s12016-021-08902-0

134. Ramesh M, Karagic M. New modalities of allergen immunotherapy. Human Vaccin Immunother. 2018;14(12):2848–2863. doi:10.1080/21645515.2018.1502126

135. Long A, Borro M, Sampath V, Chinthrajah RS. New developments in non-allergen-specific therapy for the treatment of food allergy. Curr Allergy Asthma Rep. 2020;20(1). doi:10.1007/s11882-020-0897-8

136. Chandrasekhar JL, Cox KM, Erickson LD, Cell B. Responses in the development of mammalian meat allergy. Front Immunol. 2020;11(7):1–16. doi:10.3389/fimmu.2020.01532

137. de la Fuente J, Kopáček P, Lew-Tabor A, Maritz-Olivier C. Strategies for new and improved vaccines against ticks and tick-borne diseases. Parasite Immunol. 2016;38(12):754–769. doi:10.1111/pim.12339

138. Hromníková D, Furka D, Furka S, et al. Prevention of tick-borne diseases: challenge to recent medicine. Biologia. 2022;77(3):1533–1554. doi:10.1007/s11756-021-00966-9

139. Narasimhan S, Kurokawa C, DeBlasio M, et al. Acquired tick resistance: the trail is hot. Parasite Immunol. 2021;43(5):e12808. doi:10.1111/pim.12808

140. Karasuyama H, Miyake K, Yoshikawa S. Immunobiology of acquired resistance to ticks. Front Immunol. 2020;11(10):601504. doi:10.3389/fimmu.2020.601504

141. Kuravi KV, Sorrells LT, Nellis JR, et al. Allergic response to medical products in patients with alpha-gal syndrome. J Thorac Cardiovasc Surg. 2021;9(3). doi:10.1016/j.jtcvs.2021.03.100

User Input